Skip to content
代码片段 群组 项目
README.md 4.0 KB
Newer Older
Jonatas Grosman's avatar
Jonatas Grosman 已提交
---
language: pt
datasets:
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Portuguese by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice pt
      type: common_voice
      args: pt
    metrics:
       - name: Test WER
         type: wer
Jonatas Grosman's avatar
Jonatas Grosman 已提交
         value: 13.48
Jonatas Grosman's avatar
Jonatas Grosman 已提交
---

# Wav2Vec2-Large-XLSR-53-portuguese

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"

test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
Jonatas Grosman's avatar
Jonatas Grosman 已提交
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch
Jonatas Grosman's avatar
Jonatas Grosman 已提交

test_dataset = test_dataset.map(speech_file_to_array_fn)
Jonatas Grosman's avatar
Jonatas Grosman 已提交
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
Jonatas Grosman's avatar
Jonatas Grosman 已提交

with torch.no_grad():
Jonatas Grosman's avatar
Jonatas Grosman 已提交
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
Jonatas Grosman's avatar
Jonatas Grosman 已提交

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
Jonatas Grosman's avatar
Jonatas Grosman 已提交
print("Reference:", test_dataset[:2]["sentence"])
Jonatas Grosman's avatar
Jonatas Grosman 已提交
```

## Evaluation

The model can be evaluated as follows on the Portuguese test data of Common Voice.

```python
import torch
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "", "ʿ", "·", "", "¿", "¡", "~", "՞", 
                   "؟", "،", "", "", "«", "»", "", "", "", "", "", "", "", "", "", "(", ")", "[", "]",
                   "=", "`", "_", "+", "<", ">", "", "", "°", "´", "ʾ", ""]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")
wer = load_metric("wer")

Jonatas Grosman's avatar
Jonatas Grosman 已提交
chars_to_ignore_regex = f"[{re.escape("".join(CHARS_TO_IGNORE))}]"
Jonatas Grosman's avatar
Jonatas Grosman 已提交

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
Jonatas Grosman's avatar
Jonatas Grosman 已提交
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
Jonatas Grosman's avatar
Jonatas Grosman 已提交
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
	inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

	with torch.no_grad():
		logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

	pred_ids = torch.argmax(logits, dim=-1)
	batch["pred_strings"] = processor.batch_decode(pred_ids)
	return batch

result = test_dataset.map(evaluate, batched=True, batch_size=32)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

Jonatas Grosman's avatar
Jonatas Grosman 已提交
**Test Result**: 13.48%